Thursday, June 30, 2016

Circuits and Electronics - Filters (Lecture 21)

Video Lectures:- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-18/

Lecture Notes:- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/

We often build special circuits known as filters  to eliminate that specific frequency of 50 to 60 Hz from the signal as AC in most countries are at 50 or 60 Hz. Otherwise we end up with a very low hum.

First, we need to plot the graphs of impedance against omega  for capacitors, resistors and inductors.
For very low frequencies, the impedance of the capacitor is very, very high. The capacitor looks like an open circuit but for very high frequencies, the capacitor looks like a short circuit. So for the capacitor, we will be able to see  the curve that shows its impedance.

For a  resistor R,  its behavior is frequency independent. So its impedance is simply R. And so it is
going to be a constant.

For the inductor, notice that for  very low values of omega, the impedance  is very low, and for high values of omega, the impedance is very high. Not surprisingly, the inductor looks like an open circuit to high frequencies and for DC and very low frequencies, the inductor looks very much like a short circuit.


So let's start with a CR circuit. If we plot the magnitude of H of omega of the transfer function for this filter, what does it look like?
So let's start with the high frequencies just for fun. For very high frequencies, note that the capacitor is a short circuit. And the resistor, of course, has a resistance R. So the capacitor is a short circuit and so Vi will appear directly at Vr. So for very high frequencies, my filter will give me Vi at Vr. So Vr divided by Vi will simply be unity.

What about for very low frequencies? At very low frequencies, the capacitor behaves like an open circuit. And if that behaves like an open circuit, then most of the voltage drop will be across the capacitor and very little will drop across the resistor and so I'm going to get a very low value. So low value for low frequencies and high values for high frequencies. So what we will get is a high pass filter.

 These same principles apply for an RC circuit.  So for an RC circuit, we will get a low pass filter.

 For an RL circuit, at low frequencies,  the inductor behaves like a short circuit so  H of omega  will have a low value. At high frequencies, the inductor behaves  like an open circuit, so H of omega  will have a high value. The RL circuit will be a high pass filter.

For an RLC circuit with the output voltage  measured across the resistor,  a  bandpass filter is produced. At resonance, omega equals omega0  which is  1 by square root of LC  and H of omega will be equal to 1.

For an RLC circuit with the output voltage  measured across the capacitor and inductor,  a  bandstop filter is produced. At resonance, the output voltage is zero.

For an RLC circuit with the output voltage  measured across the capacitor and inductor in parallel,  a  bandpass filter is produced. At resonance, the output voltage is zero. A major application of bandpass filters is in AM radio.  The capacitor is made variable so that the bandpass filter can tune to various frequencies.


How does the radio work?
On the x axis of the graph  is the frequency of the signal. On the y-axis, is the  signal strength.
So the way radio system work is that different radio stations would be transmitting at different frequencies. So, for example, in the Boston area, there are a bunch of radio stations that transmit the following frequency. So for example, one of the radio stations is 1030 in the Amplitude Modulation band, And then,there may be  other signals being transmitted by other radio stations. So for example, there may be a  station transmitting at 1020, another at 1010 KHz  and it goes on and on.
So when stations transmit, they try to maximize its signal strength, say  around the 1030 frequency, ,it tries to maximize it there. And then it tries to make sure that the signal strengthdoesn't encroach too much into neighboring bands.So notice that each of these stations  gets a roughly 10 kilohertz band.
So let's say, if I want to listen to WBZ News Radio, then I have to tune my capacitor here such that
the band-pass filter have its passing band focused where I care the most.

So when this is passed through, this band-pass filter will allow the 1030 range to mostly get through, and it will attenuate everything else that's further away but it is not  perfect and so it will let through a little bit of the neighboring bands.  That's why with AM radio you always get some interference from the sides of the two neighboring bands.

Fundamentally, that is a small value. Mostly the  1030 will come through. So this was the filter, the band-pass filter

Notice here that selectivity is important.
What is selectivity? Selectivity has to do with trying to capture the signal in a given range.
In the next video, we will see that the selectivity relates to something that you've seen before.

It will be shown how  a RLC circuit, gives voltage values that are much higher than voltage values that are input. We have to look at  Vc divide by Vi.. If the graph of  Vc divide by Vi against omega  is plotted, we will get a low pass filter.

We can do the maths with  Vc over Vi using the voltage divider relation. We can write the impedance of the capacitor and divide it by the sum of all of the other impedance.

And for the magnitude, we can  simply get the square of the real part plus the square of the
imaginary part square rooted.

You've taken it on faith from me that between these two points the function looks like the graph but that is not true.

Next we need to find out mathematically what happens at resonance. After some mathematical analysis, it can be seen that  V_c  is equal to Q times V_i. If Q is very large,  V_c  is more than V_i.

Next, we look at  RLC circuit with V_r  divided by V_i. We will get  a bandpass filter.


So selectivity, we saw this in the context of radios. Selectivity has to do with how selective my filter is. Recall this is a band pass filter And selectivity says, how sharp is this band? How selective am I?
So one way of figuring out selectivity is to look at this ratio omega 0 by delta 0. Where delta 0 is called the bandwidth, it's measured at the point where the various parts of the curve reaches 1
by square root 2 of its highest value.


So higher omega 0 by delta omega, higher the selectivity. So the reason is that as delta omega becomes narrower, my filter becomes more selective.

For the  next part, we need to find out what is delta omega. Absolute magnitude of  V_r  divided by V_i   is one by square root 2. Eventually we will get a result of delta omega equal to R/L.

As  2 alpha is equal to R divided by L so  omega 0 by delta omega is equal to Q. The lower the R, the sharper the peak, the more selective the filter. So high q implies high selectivity.  From  Q, you can tell all kinds of things about that circuit.

Q can also be defined as 2 pi times the energy stored in the circuit divided by energy lost per cycle in the circuit.


Monday, June 13, 2016

Circuits and Electronics - The Impedance Model (Lecture 20)

Video Lectures:- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-17/

Lecture Notes:- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/

A simpler way to get V_p is explored in this lecture. First divide the numerator and denominator by sC, and what is obtained is something that looks like a voltage divider relationship. 1/sC can be replaced with Z_c  which will make it look more like one.

Next looking at the impedance models of the resistor, capacitor and inductor, we can see how  the impedance is part of Ohm's law where Z_c and Z_L are the impedances  for a capacitor and an inductor. For a drive of the form Vi e raised to st, the complex amplitude, Vc of the response, is related to the complex amplitude Ic algebraically by a generalization of Ohm's Law.

 Looking at the RC circuit, and replacing the capacitor with the impedance model Z_c,  we will see something interesting when finding V_c. We will find that V_c is  the famed complex amplitude V_p that we have been trying to derive except the method now is much simpler. All circuit methods can be used to further analyze the circuit.

 Signal notation is discussed-there are four of them including the complex amplitude notation.

 Here is a summary of the impedance method: -

(1) First step we replace the sinusoidal sources by their complex or real amplitudes.

(2) As a second step, we replace circuit elements by boxes. These boxes are the impedance boxes, or         impedances.

(3) Determine the complex amplitudes of the voltages and currents at the various node points and the       branches.

(4)  The fourth step is not really necessary - obtain the time variables from the complex amplitudes.

 For the series RLC circuit, we have to find out what is V_r.

Next we try to get  the  magnitude of the transfer function  of  V_r/V_i.   To get the frequency response, sketch  the  graph of magnitude  against omega.  The  way to do this is to figure out the asymptotes.  We will need to find out the values of the magnitude for small and high values of omega.  We also need to look at the value of the magnitude where a certain part of the equation goes to zero.



So when omega is very small, what happens? So when omega is very small,  , and similarly,  an omega squared values can be ignored. So what  we are left with  is approximately omega RC.
Now what does omega RC look like?  Of course, at omega equals 0, it will be 0 at first. But for very low values of omega, as we increase it, it begins to go up in a linear manner.


Next, what happens for large values of omega? So when omega is very large, then  1 can be ignored in relation to omega squared LC. So we get approximately  R divided by omega L for very large values of omega.

.
So what happens at that omega equals 1 by square root of LC?   We will get a value of 1.

When we sketch the graph, we will get some kind of bandpass filter which allow signals to pass within a certain band of frequencies.


Sunday, June 5, 2016

Circuits and Electronics - Sinusoidal Steady State (Lecture 19)

Video Lectures:- ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-16/

Lecture Notes:- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/


One of the most important reasons why we care about sinusoids is that signals can be
represented as sums of sinusoids. The technique that can transform any wave form into a
sum of sinusoids representation is called Fourier analysis. Fourier series analysis can show that
it can be represented as a sum of sinusoids. Circuits have to be linear for this to happen.
The response of circuits to sinusoids as a function of frequency is called the frequency
response of the circuit. As the input  frequency of the amplifier increases, the amplitude of the output will decrease. Not only that, the phase will also change.

 A very simple circuit example with a sinusoidal input is used - an RC network- a series connection of a resistor and capacitor. This mimics the input of the RC circuit that is part of the amplifier. So the amplifier looks like this- it has a  gate capacitance, CGS. GS, and a the resistor, R. which is  some parasitic resistance of the wires.

The input voltage is  equal to some amplitude VI cosine of omega t, and for t greater than or equal to 0. There will be three ways of approaching the problem - the first being the most difficult - using differential equations. The third being the easiest - almost totally done  by inspection.



So the first step, as is our usual practice, is to set up the differential equation by the node method.
So the current leaving the node in this direction is v minus v_I divided by R. And the current heading down this direction is C dv/dt.  And the currents must sum to 0 by the node method.
So multiply the whole thing, both sides by R, and shuffle things around. So we get RC dv dt. plus v minus v_I equals 0. So what I want to do is move v_I to the right-hand side and write it like this.
And then I've been given that v_I is V_i cosine of omega t.

So now I am ready for the second step, which is to find the particular solution to the sinusoid,  v_P.
This is where things become messy and is not a path to be taken. Instead we will try an exponential input as it gives rise to a nice solution. However we are not sure how this would relate to the answer at the moment.

So for that sneaky input V_i e raised to st let's go back and do our usual thing. We'll try a solution of v_PS ( where s stands for sneaky)  given by V_p e raised to st. We will eventually get a solution where V_p is equal to V_i divided by 1 plus sRC. Replacing s with j omega, v_PS will be V_i divide by 1 plus j omega RC times e raised to j omega t.  V_i divide by 1 plus j omega, RC is the complex amplitude.

Based on Euler Relations, the real part of the sneaky input is equal to the the input, V_i cosine of omega t. Then based on the inverse superposition argument the real output can be found by
taking the real part of the sneaky output. So V_p would be V_i divide by 1 plus j omega RC. But first we will try to work out the magnitude and phase of the complex number expression in the bracket. With sound knowledge of complex numbers, the particular solution can be found.

Next would be to find the homogeneous solution which would be v_H equals A e raised to minus t
divided by RC.

The fourth step would be to find the total solution which would be v_P + v_H. With the initial conditions A can be found.

The particular solution is the sinusoidal steady state which matters more than the transient state. Steps 3 and 4 were not relevant.

A block diagram of the approach is shown and then after that a summary but there is a simpler approach by inspection.

A magnitude plot and a phase plot can be drawn for the output. This is the frequency response.

Finally a summary of  lecture 19 and a preview of what is coming up next.