Monday, January 23, 2017

Basic Electronics On The Go - Types of Capacitors

From http://www.electronicshub.org/types-of-capacitor/

There are different types of capacitors available in the market. The key factor in distinguishing different types of capacitors is the dielectric used in its construction. Some of the common capacitor types are ceramic, electrolytic (which include Aluminium capacitors, Tantalum capacitors and Niobium capacitors), plastic film, paper and mica.
Each capacitor type has its own advantages and disadvantages. The characteristics and areas of applications may vary from one capacitor to other. Hence, when choosing a capacitor, following many factors must be considered.

Size: Both the physical dimension and the value of the capacitance is important.
Working Voltage: It is an important characteristic of the capacitor. It specifies the maximum voltage that can be applied across the capacitor.
Leakage Current: A small amount of current will flow through dielectric as they are not the perfect insulators.  This is called leakage current.
Equivalent series resistance: The terminals of the capacitor have a small amount of resistance (usually less than 0.1Ω). This resistance becomes a problem when the capacitor used at high frequencies.
These factors determine how and in what applications a particular type of capacitor can be used. For example, the rated voltage of an electrolytic capacitor is larger when compared to a ceramic capacitor in the similar capacitance range.

So they are generally used in power supply circuits. Similarly, some capacitors have very low leakage current and others have very high leakage current. Depending on the application, appropriate capacitor should be chosen.




Dielectrics in Capacitors          
Fixed capacitors are more common types of capacitors. It is difficult to find an electronic circuit without a capacitor. Most of the capacitors are named after the dielectric used in the construction. Some of the common dielectrics used in the construction of capacitors are:
  • Ceramic
  • Paper
  • Plastic film
  • Mica
  • Glass
  • Aluminium Oxide
  • Tantalum Pentoxide
  • Niobium Pentoxide
The last three are used in electrolytic capacitors. Despite the use of different kinds of dielectrics in the construction of capacitors, the functionality of the capacitor doesn’t change: to store energy in the form of electric charge between the parallel plates.

Variable Capacitors

Like resistors, capacitors are also available as fixed and variable types. Variable capacitors are those in which the capacitance can be changed either mechanically or electronically. Such capacitors are generally used in resonant circuits (LC circuits) for tuning radios and impedance matching in antennas. These capacitors are usually called Tuning Capacitors.

There is another type of variable capacitors called Trimmer Capacitor. These are fixed on PCB’s and are used for the calibration of the equipment. They are non-polarised capacitors and are very small in size. They are generally not available for the use of regular customer. The capacitance of variable capacitors is very small which is usually in the order of few picofarads (generally less than 500pF).


Mechanical variable capacitors consist of a set of semi-circular metal plates fixed on the axis of a rotor. This setup is placed between a set of stator metal plates. The overall capacitance value (C) for this type of capacitors is determined according to the position of the moving metal plates with respect to the fixed metal plates. When the axis is turned, the area of overlap between the stator plates and rotor plates will vary and the capacitance is changed.

In this design, when the two sets of metal plates are fully meshed together , the capacitance value is generally at maximum value. High voltage type tuning capacitors have large air-gaps or spaces between the plates with relatively large break down voltages in order of kilo volts. For this reason these dielectric capacitors are very useful in tuning circuits.



Mechanical variable capacitors generally use air or plastic foils as dielectric. But the use of vacuum variable capacitors is increasing as they provide better working voltage range and higher current handling capabilities. The capacitance in the case of mechanically tuned capacitors can be varied using the screw on the top of the capacitor.
In the  case of electronically controlled variable capacitors, a reverse biased diode is used in which the thickness of the depletion layer will vary according to the applied DC voltage. Such diodes are called  Variable Capacitance Diodes or simply Varicaps or Varactors.

Ceramic Capacitors

Ceramic capacitors are the most used capacitors in the electronics industry. They are also the most produced capacitors with over 1000 billion units being produced every year. The name comes from the ceramic material which is the dielectric used in its construction.
Ceramic capacitors are fixed capacitance type capacitors and they are usually very small (in terms of both physical dimensions and capacitance). The capacitance of ceramic capacitors is usually in the range of picofarads to few micro farads (less than 10µF). They are non-polarised type capacitors and hence can be used in both DC as well as AC circuits.

The construction of these types of capacitors is very simple. A small ceramic disc is coated with silver on either side. Hence they are also called as Disc Capacitors. The ceramic acts as dielectric (insulator) and the silver coating will form the electrodes.
The thickness and the composition of the ceramic layer will determine the electrical properties of the capacitor. In order to achieve large capacitance values, multiple layers of such disc are stacked to form a multi-layer ceramic chip capacitor (MLCC). Modern electronics generally comprise of MLCC capacitors.

In order to achieve large capacitance, the dielectric constant of ceramic capacitors has to be very high. Ceramic capacitors are divided into two classes based on the areas of applications.

Class 1 Ceramic Capacitors

Often used in resonant circuits because of their high stability and low loss. The most common type of ceramic used in class 1 capacitor is made from Titanium dioxide (TiO2) with small portions of Zinc, Magnesium used as additional compounds. These are added in order to achieve the maximum possible linear characteristics.
Class 1 capacitors have low permitivity and hence the efficiency in terms of volume is relatively low. Therefore, the capacitance range of class 1 capacitors is low. The electrical losses of class 1 capacitors are very low and the dissipation factor is 0.15 percent. The value of the capacitance is independent of the applied voltage.

They have a liner temperature coefficient. All these characteristics of class 1 ceramic capacitors make them useful in the applications like filters with high Q factor and oscillator circuits like PLL’s. There is no fear of aging of class 1 ceramic capacitors.

Class 2 Ceramic Capacitors

Often used in buffers, coupling circuits and by-pass systems because of their high efficiency in terms of volume. This high volume efficiency is because of their high permittivity. The capacitance of class 2 capacitors will depend on the applied voltage and has a non-linear change for temperature changes.

The accuracy and stability are less when compared to class 1 ceramic capacitors. The ceramic for class 2 capacitors is made from ferro electric materials like Barium Titanate (BaTiO­) with additives like silicates of aluminium or magnesium and oxide of aluminium.
Because of the high permittivity in class 2 capacitors, high capacitance values are possible with smaller size than class 1 capacitors of same rated voltage. Hence, they are used in buffers, filters and coupling circuits where the capacitor is required to maintain a minimum capacitance. Class 2 capacitors can age over time.
Another class of ceramic capacitors is also available called Class 3 with higher permittivity and better volumetric efficiency. But the electrical characteristics of this class are worse along with poor accuracy and stability.
Generally, ceramic capacitors have less ESR (Equivalent series resistance) and leakage current when compared to electrolytic capacitors. The working voltage of class 1 ceramic capacitors is up to 1000V and that in class 2 ceramic capacitors is up to 2000V.

The main advantage of ceramic capacitors is that there are no coils inside its structure and so there is no inductance factor introduced during circuit operation. Hence, ceramic capacitors are suitable for high frequency applications.
Ceramic capacitors are available in normal two leaded through-hole structures, surface mount (SMT) multi layer mode and special lead less disc capacitors that are designed particularly for PCB’s. Both the through-hole and surface mount ceramic capacitors are frequently used. Ceramic capacitors are normally having a 3-digit number coded on their body to identify the capacitance value generally in picofarads (pF).

In that, the first two digits are used to indicate the capacitance value and the third digit indicates the number of zeros to be added. For example a ceramic capacitor with the markings 153 would indicate 15 and 3 zero’s in picofarads which is equivalent to15, 000 pF or 15nF.

Film Capacitor

Film capacitors are the most commonly used type of capacitors among all types of capacitors which have the difference in their dielectric properties. Film capacitors are the capacitors with an insulating plastic film as its dielectric and these are non-polarised capacitors.
The dielectric materials for these capacitors  exist in the form of a thin layer which is provided with metallic electrodes and it is wounded into a cylindrical winding. Both electrodes of the film capacitors may be zinc or metalized aluminium.
The main advantage of film capacitor is direct connection between its internal construction and its electrodes on both ends of the winding. This direct contact with electrodes causes  all current paths to become short.This design behaves like a large number of individual capacitors connected in parallel. And also this type of capacitors structure results in low ohmic losses and the low parasitic inductances . These film capacitors are used in AC power applications and also used in the high frequency applications.

Some of the examples of plastic films which are used as dielectric for the film capacitors are Polypropylene, Polyethylene naphthalate, Polyester, Polyphenylene sulfideand Polytetrafluoroethylene. Film type capacitors are in the market with capacitance value ranges from 5pF to 100uF .Film Film capacitors also available in different shapes and different styles which include,

  • Wrap & Fill (Oval and Round) type: In this type the capacitor ends are sealed with epoxy and the capacitor is wrapped in a tight plastic tape.

  • Epoxy Case (Rectangular & Round): In this type capacitors are encased in a moulded plastic shell and it is filled with epoxy.

  • Metal Hermetically Sealed (Rectangular & Round): These types of capacitors are encased in a metal tube or can, and sealed with epoxy.
In present days the above all case style capacitors are available in both the types Radial and Axial Leads. The main advantage of the plastic film capacitors is that, they operate well and good at high temperatures when compared to other paper types.

These capacitors have small tolerance, high reliability and also they have very long service life. Examples of film type capacitors are cylindrical film, rectangular metalized film and foil film types. They are given below.













Figure 4.Foil type film capacitors.


These film types of capacitors require much thicker dielectric material in order to avoid the punctures and tears in the dielectric film. Hence these are suited for low capacitance value and large sizes.

Film power capacitors

Film power capacitors are also called as Power film capacitors.The construction techniques and materials which are used for large power film capacitors are usually similar to those of the ordinary film capacitors. However these capacitors with high power ratings are used in the applications of power systems and electrical installations.

Power film capacitors are used in a variety of applications. These capacitors serve as snubbing or damping capacitors when  a resistor is connected in series with it. These are also used in close tuned or low detuned filter circuits for filtering the harmonics and also used as pulse discharge capacitors.



Polypropylene Capacitor 

Polypropylene capacitor is one of the many varieties of film type capacitors. Polypropylene capacitors are the capacitors that have a polypropylene film as their dielectric. Polypropylene capacitors are available within the capacitance ranges from 100 pf to 10µF.

The main feature of Polypropylene Capacitor is high working voltages up to 3000 V. This feature makes polypropylene (pp) capacitors useful in circuits in which operating voltages are typically very high, such as power amplifiers particularly valve amplifiers, power supply circuits and TV circuits. Polypropylene capacitors are used when a better tolerance is needed than what a polyester capacitor can provide.
Polypropylene capacitors are also used in coupling and storage applications due to their high isolation resistance values. And also they have stable capacitance values for frequencies below 100KHZ. These polypropylene capacitors are used in the applications where we need to perform the tasks of noise suppression, coupling, filtering timing, blocking, bypassing, and handling pulses.




Polycarbonate capacitor

Polycarbonate capacitors are the capacitors that have a polycarbonate material as its dielectric. These types of capacitors are available within the capacitance range of 100pF to 10µF and have the working voltages up to 400V DC. These polycarbonate capacitors can operate with a temperature range of -55°C to +125°C without de-rating.
These capacitors have very good temperature coefficients, due to these reason polycarbonate capacitors are preferable. These capacitors are not used in the high-precision applications because of their high tolerance levels of 5% to 10%. The polycarbonate capacitors are also used for AC applications. Sometimes they are also found in switching power supplies.



Silver Mica Capacitor

Silver Mica Capacitors are capacitors that are made from depositing a thin layer of silver on a mica material as its dielectric.The reason for the use of silver mica capacitors is  their high performances compared to any other type of capacitors.
Silver mica capacitors can be obtained with the tolerance of +/- 1%. This is much better than any other type of capacitor which is available in today’s market. The temperature co-efficient of silver mica capacitors is much better than other types of capacitors.
And this value is positive and it is normally in the region of 35 to 75 ppm / C, with an average value of +50 ppm / C. Capacitance values for silver mica capacitors are normally in the range between a few pico-farads to 3300 pico -farads.Silver mica capacitors have very high levels of Q and also have small power factors. The silver mica capacitors have a voltage range between 100V to 1000 V.

Silver mica capacitors are used in RF oscillators.The silver mica capacitors are not used in coupling and decoupling applications because of their high cost.  Due to their size, cost and also the improvements in other types of capacitors, these are not used as widely as the others  nowadays.




Electrolytic Capacitors

Electrolytic Capacitors are generally used in the applications where very large capacitance values are required. The electrolytic capacitors have a metallic anode covered with an oxidized layer generally used as its dielectric. Another electrode of a capacitor is a non-solid or solid electrolyte.

Most of the electrolytic capacitors are polarized. These capacitors are categorized according to their dielectric material. Mainly these are categorized in to three classes, they are given as
  • Aluminium electrolytic capacitors: Here aluminium acts as its dielectric.
  • Tantalum electrolytic capacitors: Here tantalum pent oxide acts as its dielectric.
  • Niobium electrolytic capacitors:Here niobium pent oxide acts as its dielectric
Usually the permittivity of tantalum pent oxide is almost three times greater than the permittivity of aluminum dioxide, but this permittivity determines only the dimensions. Generally three types of electrolytes are used.They are as follows:

  • Non solid (wet or liquid): These capacitors have the conductivity nearly 10ms/cm and these are available with low cost.
  • Solid manganese oxide: These capacitors have the conductivity nearly 100ms/cm and also have high quality and stability.
  • Solid conductive polymer: These type of capacitors have conductivity approximately 10000 ms/cm and also the ESR values of <10m li="">

  • Electrolytic Capacitors are generally used in direct (DC) power supply circuits. These are also used in the applications of coupling and decoupling to reduce ripple voltage, due to their large capacitance values and their small size. One of the main disadvantages of electrolytic capacitors is their low voltage ratings.


Aluminum Electrolytic Capacitors

Aluminum Capacitors are capacitors that are made of oxide film on aluminum foils with a strip of absorbent paper between them which is soaked in an electrolyte solution and all these design can be sealed in a can. Basically there are two types of Aluminum Electrolytic Capacitors they are plain foil type and etched foil type.

Plain foil type electrolytic capacitors are mainly used as smoothing capacitors in power supply circuits while etched foil type capacitors are used in coupling DC blocking and by pass circuits.
Electrolytic aluminum capacitors cover the capacitance range of 1uF to 47000uF and large tolerance of 20%. The working voltage ratings range up to 500V. These are cheaper and easily available in the market.
The capacitance value and voltage ratings are either printed in uF’s or coded by a letter followed by three digits. These three digits represent the capacitance value in pF where first two digits represent the number and the third one is the multiplier digit.






Tantalum Electrolytic Capacitors

Tantalum Capacitors are capacitors that are made of tantalum pentoxide as its dielectric material. Tantalum electrolytic capacitors are also polarised capacitors like aluminum capacitors.Tantalum electrolytic capacitors are obtained in both the types of wet (foil) and dry (solid).
The second terminal of tantalum electrolytic capacitors is smaller than the terminal of equivalent aluminum capacitors and that terminal is made with manganese dioxide.
The main advantage of Tantalum Electrolytic Capacitorsover aluminum capacitors is that they are more stable, lighter and smaller. They have capacitance values range from 47nF to 470uF and maximum working voltage up to 50V. These are costlier than aluminum electrolytes.

The properties of the tantalum oxide dielectric are low leakage current and better capacitance stability. These properties of tantalum oxide dielectric make them suitable to be used in blocking, by-passing, decoupling, filtering and timing applications. And also these properties are much better than the dielectric of aluminum oxide.



Super-capacitors

The super- capacitor is also known as ultra-capacitor or electric double-layer capacitor. These capacitors are made with a thin electrolyte separator which is flanked with activated carbon ions. It differs from a regular capacitor,the capacitance value of a super capacitor is very high and it is in order of milli farads with the voltage ranges of 2.3V to 2.75V.
Super capacitors are categorized into three types based on their electrode design they are
  • Double-layer capacitors: These capacitors have carbon electrodes or their derivatives.
  • Pseudo capacitors: These capacitors have metal oxide or conducting polymer electrodes.
  • Hybrid capacitors: These capacitors have asymmetric electrodes.
Super capacitors are mainly used in the applications, where very high number of charge/discharge cycles is needed, where long lifetime is required and where the large amount of power is needed within a short time.The typical applications range of super capacitors are from milliamp current and milli-watts of power with a duration of few minutes to several amps current and several kilo watts power within a shorter period. These super capacitors are generally used as temporary power source, as a replacement of batteries.





Friday, January 20, 2017

Basic Electronics On The Go - Capacitor Characteristics

From www.electronicshub.org/capacitor-characteristics/


Introduction

A capacitor has large number of specifications and characteristics. By observing the information printed on the body of a capacitor, we can understand very well about the characteristics of a capacitor. But some capacitors have colors or numeric codes on their body, due to this it is difficult to understand about characteristics. Each type or family of capacitor has its own set of characteristics and identification system. Some capacitors identification systems are easy to understand their characteristics and others use misleading symbols, letters and colors.
To understand the characteristics of a particular capacitor easily, first find out the capacitor family whether it is ceramic, plastic, film or electrolytic and from that it is easy to identify the characteristics.Even though capacitors have same capacitance value they may have different working voltages. If you use a capacitor which has low working voltage in place of a capacitor which has high working voltage then the increased voltage may damage the low voltage capacitor even though both capacitors have same capacitance.

Already we know that electrolytic capacitor has polarities, so while connecting the electrolytic capacitor in the circuit, positive terminal must connect to the positive connection and negative terminal of capacitor to negative connection otherwise the capacitor may damage. So it is always better to replace the damaged or old capacitor in the circuit with the new one which has same characteristics.The figure below figure shows the characteristics of a capacitor.



A capacitor comes with a set of characteristics. All these characteristics can be found in datasheets that are provided by capacitor manufacturers. Now let us discuss some of them.

Nominal Capacitance (C)


One of the most important one among all capacitor characteristics is the nominal capacitance (C) of a capacitor.This nominal capacitance value is generally measured in pico-farads (pF), nano-farads (nF) or micro-farads (uF), and this value is indicated with colors, numbers or letters on the body of a capacitor. This nominal capacitance value, which is printed on the side of a capacitor body, is not necessary to equal to its actual value.
The nominal capacitance value may change with working temperatures and with the circuit frequency. These nominal values are as low as one pico-farad (1pF) for smaller ceramic capacitors and as high as one farad (1F) for electrolytic capacitors. All capacitors have a tolerance rating that ranges from -20% to +80%.



Working Voltage (WV)


The working voltage is one more important characteristic of all capacitor characteristics. The maximum amount of voltage which is applied to a capacitor without failure during its working life is called as working voltage (WV). This working voltage is expressed in terms of DC and also it is printed on the body of a capacitor.

Generally working voltage which is printed on the body of a capacitor , refers  its DC voltage but not its AC voltage , because the AC voltage is in its rms value.So capacitor working voltage must be greater than the 1.414 (Vm = Vrms x√2) times of its actual AC value to apply AC voltage to the capacitor. This specified DC working voltage of a capacitor(WV-DC) is valid only within in a certain temperature range, such as -300C to +700C. If you apply a DC or AC voltage which is greater than the working voltage of a capacitor then the capacitor may damage.
The working voltages which are commonly printed on the body of a capacitor are 10V, 16V,25V, 35V, 50V, 63V, 100V, 160V, 250V, 400V and also 1000V. All the capacitors will have a longer working life if they operated within their rated voltage values and in a cool environment.



Tolerance (±%)


Tolerance is the permissible relative deviation of the capacitance from the rated value, which is expressed in per cent. Like resistors, the tolerance value for capacitor also exists in either plus or minus values. This tolerance value is generally measured in either pico-farads (+/-pF) for low value capacitors which are less than 100pF or in percentages (+/-%) for higher value capacitors, which are greater than 100pF.
The tolerance value of a capacitor is measured at a temperature of +20°C and it is valid only at the time of its delivery. If a capacitor may be used after a longer period of storage then the tolerance value will increase, but according to the standard specifications, this value will not exceed twice the value which is measured at the time of its delivery. The delivery tolerances usually for wound capacitors are +/-(1%,2.5%,5%,10%,20%). The very general tolerance values variation for capacitors is 5% or 10%, and this is rated as low as +/-1% for plastic capacitors.


Leakage Current (LC)


All dielectric materials which are used in the capacitors to separate the metal plates of capacitors are not perfect insulators. They allow the small amount of current, such as leakage current to flows through it. This effect is because of the high powerful electric field which is formed by the charge particles on the plates of a capacitor when supply voltage (V) is applied to it.

The leakage current of a capacitor is a small amount of DC current which is in nano-amps (nA). This is because of the flowing of electrons through the dielectric material or around its edges and also by discharging it overtime when the power supply is removed.

Leakage current is defined as transferring of unwanted energy from one circuit to another circuit. One more definition is the leakage current is a current when ideal current of the circuit is zero. Capacitors leakage current is a considerable factor in amplifier coupling circuits and in power supply circuits.
The leakage current is very low in film or foil type capacitors and it is very high (5-20 uA per uF) in electrolytic (tantalum and aluminium) type capacitors, where their capacitance values are also high.

Working Temperature

The capacitance value of a capacitor varies with the changes in temperature. The changes in temperature changes the properties of the dielectric. Working Temperature is the temperature of a capacitor which operates with nominal voltage ratings. The general working temperatures range for most capacitors is -30°C to +125°C. In plastic type capacitors this temperature value is not more than +700C.
The capacitance value of a capacitor may change, if air or the surrounding temperature of a capacitor is too cool or too hot. These changes in temperature will cause to affect the actual circuit operation and also damage the other components in that circuit.I think it is not a simple thing to keep the temperatures stable to avoid capacitors from frying.

The liquids within the dielectric can be lost to evaporation especially in electrolytic capacitors (aluminum electrolytic capacitors) when they will operate at high temperatures (over +850C)and also the body of the capacitor would become damaged due to the leakage current and internal pressure. And also the electrolytic capacitors cannot be used at low temperatures, such as below -100C.


Temperature Coefficient


The temperature coefficient (TC) of a capacitor describes the maximum change in the capacitance value with a specified temperature range. Generally the capacitance value which is printed on the body of a capacitor is measured with the reference of temperature 250C and also the TC of a capacitor which is mentioned in the datasheet must be considered for the applications which are operated below or above this temperature.Generally the temperature coefficient is expressed in the units of parts per million per degree centigrade (PPM/0C) or as a percent change with a particular range of temperatures.

Some capacitors are linear (class 1 capacitors), these are highly stable with temperatures; such capacitors have a zero temperature coefficient. Generally Mica or Polyester capacitors are examples for the Class 1 capacitors. TC specification for class 1 capacitors will always specifies the capacitance change in parts per million (PPM) per degrees centigrade.

Some capacitors are non linear (class 2 capacitors), these capacitors temperatures are not stable like class1 capacitors, and their capacitance values will increase by increasing the temperature values, Hence these capacitors give a positive temperature coefficient. The main advantage of the class 2 capacitors is their volumetric efficiency. These capacitors are mainly used in the applications where high capacitance values are required, while stability and quality factor with temperatures are not main factors to consider. The Temperature Coefficient (TC) of class 2 capacitors is expressed directly in percentage. One of the useful applications of temperature coefficient of capacitors is to use them to cancel out the effect of temperature on other components within a circuit such as resistors or inductors etc.



Polarization

Generally the capacitor polarization belongs to the electrolytic type capacitors, such as aluminum type and tantalum type of capacitors. Majority of the electrolytic capacitors are polarized, that is it needs correct polarity when supply voltage is connecting to the capacitor terminals, such as positive (+ve) terminal to positive (+ve) connection and negative (-ve) to negative (-ve) connection.

The oxide layer inside the capacitor may broken by incorrect polarization, this causes to flow of high currents through the device. As a result capacitor damages as mentioned earlier. To prevent incorrect polarization the majority of electrolytic capacitors have arrows or black stripe or band or chevrons on one side of their body to denote their negative (-ve) terminals as shown in the figure below.

Equivalent Series Resistance (ESR)

The equivalent series resistance (ESR) of a capacitor is defined as the AC impedance of a capacitor when it used at very high frequencies and also with the consideration of dielectric resistance. Both the DC resistance of dielectric and the capacitor plate’s resistance are measured at a particular temperatures and frequency.


ESR acts like a resistor in series with a capacitor. The ESR of a capacitor is the rating of its quality. We know that theoretically a perfect capacitor is lossless and also have the ESR value zero. Often this resistance (ESR) causes  failures in the capacitor circuits.

The Effects of Equivalent Series Resistance


The equivalent series resistance (ESR) of the output capacitor in the circuit  affects the performance of the device. And also the ESR may reduce the supply voltage of a capacitor. The ESR is quite opposite to the insulation resistance of a capacitor which is presented as pure resistance in parallel with the capacitor in some type of capacitors. An ideal capacitor has only its capacitance and ESR value is very less (less than 0.1Ω).
If the dielectric thickness increases then the ESR will increase. If the surface area of the plate increases then the ESR value will go down. To calculate capacitor’s ESR, we require something other than a standard capacitor meter such as ESR meter. 

In a non-electrolytic capacitor or a capacitor with solid electrolyte the metallic resistance of leads, electrodes and losses in the dielectric are causes to ESR. Generally the ESR values for ceramic capacitors are in between 0.01 to 0.1 ohms. Aluminium and tantalum electrolytic capacitors with non solid electrolyte have very high ESR values, such as several ohms. A main problem with aluminium electrolytic capacitors is that, the circuit components will damage if the ESR values of the capacitors which are used in that circuit increases over time in the operation.

Generally the ESR values are less for polymer capacitors than electrolytic (wet) capacitors. Thus the polymer capacitors can handle the higher ripple currents. A capacitor which has a very low ESR ratings can be used as a filter. Capacitors have the ability of storing the electrical charge even though the charging current is not flowing through it. The capacitors used in the televisions, photo flashes and capacitor banks are generally of electrolytic type capacitors. The leads of large value capacitors should not touch after the power supply is removed.



Wednesday, January 18, 2017

Basic Electronics On The Go - Capacitance and Charge

From http://www.electronicshub.org/capacitance-and-charge/

Capacitance

Capacitance of a capacitor is defined as the ability of a capacitor to store the maximum electrical charge (Q) in its body. Here the charge is stored in the form of electrostatic energy. The capacitance is measured in the basicSI units i.e. Farads. These units may be in micro-farads, nano-farads, pico-farads or in farads. The expression for the capacitance is given by,
C = Q/V = εA/d = ε0 εr A/d

In the above equation
C is the capacitance,
Q is the charge,
V is the potential difference between the plates,
A is the area between the plates,
d is the distance between the plates.
ε permittivity of dielectric
ε0 permittivity free space
εr relative permittivity 

Self-capacitance

Self-capacitance property is related to the capacitors especially to the isolated conductors. As the name indicates the self capacitance is  the amount of electric charge that must be added to an isolated conductor to raise its electric potential by one unit (i.e. one volt, in most measurement systems) .Generally normal conductors will have mutual capacitance. This is also measured in the S.I units i.e. Farads.
The self-capacitance of a conducting sphere which has the radius ‘R’ is given by,
                                                       C=4 πɛoR

Self-capacitance values of some standard devices are given below.
  •  For the top plate of a van de Graff generator which is having radius of 20 cm self capacitance is 22.24 pF.
  •  For the planet EARTH self capacitance is 710 uF.

Stray capacitance

Stray capacitance is the unwanted capacitance.The capacitors introduce some capacitance in circuits. But the components like resistors,inductors, even wire will have some capacitance. This is called stray capacitance. Generally at high frequencies this will introduce noise to the circuit. This undesired capacitance is small unless the conductors are close together for long distances or for a large area.


The stray capacitance cannot be eliminated completely but it can be reduced. Circuit designers should take care of stray capacitance while designing the circuit. The separation between the components and the lines should be maintained in order to reduce the unwanted capacitance.
It is also measured in S.I units  i.e. Farads.

Examples are capacitance between the turns of the coil, capacitance between two adjacent conductors.

Capacitance of simple systems

Calculation of the capacitance is nothing but solving the Laplace theorem ∇ 2φ = 0 with a constant potential on the surface of a capacitor. The capacitance values and equations for some simple systems are given below. (Click on table to see larger view)

Charge on a Capacitor

The ability of a capacitor to store maximum charge (Q) on its metal plates is called its capacitance value (C). The polarity of stored charge can be either negative or positive.Such as positive charge (+ve) on one plate and negative charge (-ve) on another plate of the capacitor. The expressions for charge, capacitance and voltage are given below.
C = Q/V, Q = CV, V = Q/C
Thus charge of a capacitor is directly proportional to its capacitance value and the potential difference between the plates of a capacitor.Charge is measured in coulombs.

One coulomb:
One coulomb of charge on a capacitor can be defined as one farad of capacitance between two conductors which operate with a voltage of one volt.


Charging & Discharging of a Capacitor

The below circuit is used to explain the charging and discharging characteristics of a capacitor. Let us assume that the capacitor, which is shown in the circuit, is fully discharged. In this circuit the capacitor value is 100uF and the supply voltage applied to this circuit is 12V.
Now the switch which is connected to the capacitor in the circuit is moved to the point A. Then the capacitor starts charging with the charging current (i) and also this capacitor will fully charge. The charging voltage across the capacitor is equal to the supply voltage when the capacitor is fully charged i.e. VS = VC = 12V. When the capacitor is fully charged means that the capacitor maintains the constant voltage charge even if the supply voltage is disconnected from the circuit.
In the case of ideal capacitors the charge remains constant on the capacitor but in the case of general capacitors the fully charged capacitor is slowly discharged because of its leakage current.
When the switch is moved to the position B, then the capacitor slowly discharges by switching on the lamp which is connected in the circuit. Finally it is fully discharged to zero. The lamp glows brightly initially when the capacitor is fully charged, but the brightness of the lamp decreases as the charge in the capacitor decreases.



Current through a Capacitor

The current (i) flowing through any electrical circuit is the rate of charge (Q) flowing through it with respect to time. But the charge of a capacitor is directly proportional to the voltage applied through it. The relation between the charge, current and voltage of a capacitor is given in the below equation.
I (t) = d Q(t)/dt = C dV(t)/dt
We know that
Q = CV
V = Q/C
V (t) = Q(t)/C
Q(t) =C V(t)
The current to voltage relation is given by, I (t) = C dV(t)/dt

From this relation we observed that the current flowing through the capacitor in the circuit is the product of the capacitance and the rate of change of voltage applied to the circuit. 



Unit of capacitance (Farad)

Josiah Latimer Clark in the year of 1861first used the termFarad. Farad is a standard unit of the capacitance. This is an extremely a large unit for the capacitance.
One farad of capacitance is defined as the capacitance with one coulomb of charge which operates at the voltage of one volt.
C = Q/V

1Farad = 1Colomb/1Volt


Now capacitors are available with large capacitance values of hundreds of farads. These capacitors with high capacitance values are called as “super capacitors”. These capacitors are utilizing large surface area to deliver high energy because these have high capacitance values.
At low voltage, super capacitors have the ability to store high energy with high capacitance values. These high energy super capacitors are used in hand held portable devices to replace large, heavy and expensive lithium type capacitors, because they store high energy, like batteries. These capacitors are also used in audio and video systems in vehicles by replacing the high batteries.

Energy in a Capacitor

Energy is the amount of some work against the electro-static field to charge the capacitor fully. In the capacitor at initial stage of charging, the charge Q is transferred between the plates from one plate to another plate. This charge either +Q or –Q is interchanged between two plates of a capacitor. After transformation of some charge, an electric field is formed between the plates, in that case we need some extra work to charge the capacitor fully. This extra work is called as the energy stored in a capacitor. The energy is measured in the units of Joules (J). Now we see the equations for this energy and work.
dW = V dQ
dW = (Q/C) dQ


After integration of the above equation is,
W = Q2/2C
W = (CV)2/2C
W= CV2/2 Joules
Finally we get the energy stored in a capacitor is
Energy (W) = CV2/2 Joules
Now we calculate the energy stored in a capacitor of capacitance 200 uF which operate with voltage of 12V.
W = CV2/2
W = (200×10-6×122)/2 = 14.4 m J